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Flow properties for the non-equilibrium two-phase flow of a gas-particle mixture 
are formulated from the theoretical standpoint. A quasi-one-dimensional flow 
containing an arbitrary volume of particles is considered, and mass transfer 
between the phases is allowed. It is shown that meaningful definitions of the flow 
properties of each phase can be constructed as area-averages of (time-averaged 
local flow-field properties). Special definitions of averages overcome the diffi- 
culties introduced by the fact that one phase does not occupy the entire region 
at  all times. Conservation equations for the newly defined properties are given 
and criteria for their validity determined. The results give fresh interpretation 
to several aspects of two-phase flow: the particle-phase pressure is associated 
with the internal particle pressure, whereas Reynolds-stress terms are introduced 
by fluctuations in particle velocity. Reynolds stresses for both phases are 
important in laminar as well as turbulent flow and provide a significant particle- 
phase viscous effect. The interphase momentum transfer because of condensation 
or vaporization is shown to be characterized by the particle-phase velocity 
irrespective of the direction of the mass transfer. 

1. Introduction 
Fluid-mechanic problems involving gas-particle mixtures arise in many pro- 

cesses of practical importance. One of the earliest problems is that of the heat and 
mass transfer in the mist-flow region of a boiler tube. The liquid rocket is another 
example. Usually the oxidizer vaporizes much more rapidly than the fuel spray 
and combustion occurs heterogeneously around each droplet. The length of the 
combustion chamber and the stability of the flow to acoustic or shock waves are 
practical two-phase flow problems. 

Solid rockets also have important particle-gas flow problems. Metal particles 
enriching the mixture are carried through the combustion chamber and out of 
the nozzle. These particles also burn heterogeneously and may actually be liquid 
droplets in the latter stages. The disequilibrium between the velocity of the gases 
and the burning particles is an important loss of thrust. In aircraft design 
problems of rain or hail impingement on surfaces arise. Removal of rain from a 
windshield and avoidance of particle ingestion in jet intakes during taxi are other 
practical problems. The writer is not familiar with any problems on the astro- 
nomical scale; however, phenomena such as the solar wind demonstrate that 

18 Fluid Mech. 31 



274 Ronald Panton 

space contains ample matter to be considered as a continuum for certain prob- 
lems. There are, of course, many examples of dispersed particles: meteoric 
showers, asteroid belts, star clusters, galaxies, comets, the rings of Saturn, etc. 

Fluidized beds are an important innovation in chemical engineering. In  the 
simplest arrangement a screen supports particles, perhaps a catalyst, in a vertical 
tube. The gas flows from bottom to top, and, when a sufficient velocity is reached, 
the bed becomes fluidized, and the particles are supported individually by the 
drag of the gas stream. This type of particle-gas flow is non-dilute in that the 
particles occupy a significant portion of the flow cross-section. Pertinent 
problems in operating the beds deal with stability, expansion, particle segrega- 
tion, ‘boiling’ of gas bubbles, etc. Many variations of fluidized beds are possible: 
a screen may restrain the particles at  the top in addition to the bottom; particles 
may be extracted a t  the bottom and continuously fed in at  the top so that the 
bed moves; beds which move upward are also used. Sometimes the purpose of 
the system is to transfer heat, utilizing the high heat capacity of the particles. 
Another variation is the spouting bed, where the gas enters a relatively small 
hole and the sides of the bed are conical. This leads to a central, upward-moving, 
jet with recirculation of the particles around the sidewalls. Such an arrangement 
could be used for a batch-drying process. 

Transportation of particle materials, such as wheat, by entrainment in a gas 
flow is another example of purposeful two-phase flow. Sometimes the results are 
undesirable as in the case of dirt particles in the flow from a gas well. An inter- 
esting scheme for transport of fine particles such as cement is to construct a pipe 
of two rectangular chambers separated by a porous wall. Gas flows into the lower 
chamber through the porous wall and fluidizes the particle material in the upper 
chamber. The top of the upper chamber is a porous cloth to allow the gas to exist 
but retain the particles. Giving the pipe a tilt allows gravity forces to transport 
the cement. This system is literally a sliding fluidized bed. 

A final example is the flow of blood. Many studies have considered blood as 
a single fluid with non-Newtonian viscosity. The true nature is a mixture of blood 
cells and a plasma, a two-phase mixture of particles and liquid. This aspect is 
undoubtedly important in many blood-flow problems, and may even be signifi- 
cant in unsteady arterial flow. 

One finds in the literature an amazing number of derivations of equations for 
the flow of a gas-particle mixture. The fact that each researcher reformulates the 
equations for his particular problem is perhaps symptomatic of a lack of clarity 
about flow properties. The equations have been developed by several authors for 
various special problems and under various assumptions. A few derivations, 
primarily from the aeronautical engineering literature, are listed here : Carrier 
(1958), Van Deemter & Van der Laan (1961), Kliegel (1963), Lype (1965), 
Marble (1964), Murray (1965), Rannie (1962), Rudinger (1965), So0 (1961), Tien 
(1961), Williams (1959) and Zuber (1964). 

This paper wil1 be concerned with the flow properties of a non-equilibrium 
two-phase system. The condensed phase is assumed to be dispersed droplets which 
are imbedded in a gas. Allowance must be made for disequilibrium between the 
velocity and temperature of the particles and those of the gas phase. Hence it is 
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necessary to account for mass, momentum, and energy exchanges between the 
two phases. 

The conservation equations governing the two-phase flow are usually derived 
by physical arguments. These derivations are essentially applications of con- 
servation concepts to a control volume. They presuppose the definition of 
velocities, pressures, temperatures, etc., for each phase. Terms which represent 
various effects are formulated by physical arguments and analogy with similar 
terms for single-phase flow. This approach actually amounts to a rederivation of 
the laws of fluid motion for the two-phase system. In such a derivation, the worker 
is obliged to formulate each term properly and include all significant factors. 

An alternative approach, which is niore rigorous and deductive in nature, is 
presented. Starting with the local conservation equations, one may proceed 
mathematically by integrating over a control volume, defining new average vari- 
ables and limiting the control volume to zero size. Subsequent time averaging 
will produce new differential equations describing the two-phase flow. The 
advantage of such an approach is two-fold. First, the variables appearing in the 
final equations have explicit definitions in terms of the local flow-field variables. 
Secondly, the assumptions are stated explicitly during the derivation in order to 
simplify the mathematical expressions and thus the reason, necessity and effect 
of each assumption is apparent. Together they lead to a clearer understanding of 
the meaning of each property in the two-phase equations and of the applic- 
ability of the equations themselves. 

This paper will deal with quasi-one-dimensional flow. Some of the problems 
noted above require a full three-dimensional treatment and hence the results are 
not directly applicable in these cases. The purpose is to present a formalism where 
the flow is viewed as two co-existent and interacting continua. Emphasis is 
placed upon the proper definition of the flow properties, the conservation 
equations relating these properties, and the criteria under which the equations 
are valid. The method gives a fresh interpretation of the physical role and origin 
of each property and in some cases a completely different interpretation than 
that of previous work. 

2. Physical background 
In  order to simplify the work and leave the central ideas unencumbered with 

details, the flow is considered as one-dimensional without the presence of any 
body or electrical forces. The particles are either liquid droplets or solid particles, 
but they do not break up or shatter and are incompressible. The discussion will 
be carried out for liquid droplets realizing that the equations are the same or 
simpler for solid particles. Also, the case of solid particles carried by a liquid 
matrix instead of a gas requires only simple changes; however, compressible 
particles, such as gas bubbles in a liquid, would require an extensive reformula- 
tion. Mass may be transferred to or from the particles by condensation or evapo- 
ration; however, all particles at  a particular position and time are the same size. 

An important restriction is that the diameter of the particle is a macroscopic 
length. This is necessary so that it is meaningful to form integrals over the 
particle surface of local continuum properties. 

18-2 
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One usual assumption which is not made here is that the mixture is dilute in 
the sense that the volume of the particles is a small fraction of the total volume. 
A fluidized bed is an example of a non-dilute flow. Another facet of the present 
investigation is that we specifically include turbulence. 

x = const. 

FIGURE 1. Flow field. 

The interface between the gas and the particle material is idealized as a surface 
of zero thickness which contains no mass, momentum, or energy. On one side of 
the surface the thermodynamic properties are those of the gas phase, and on the 
other, those of the particle material. The temperature and tangential velocity are 
continuous across the interface surface. The surface does have one property, a 
tension force which maintains the mechanical equilibrium of the droplet. Another 
assumption is that particles are large enough so that the thermodynamic 
properties are independent of the radius. Under usual circumstances this means 
that the particles must be larger than about 1 ,u in diameter. 

The flow field is represented schematically in figure 1 where the velocity across 
a typical cross-section is shown. The gas velocity is arbitrarily assumed higher 
than that of the liquid particles. As the surface of a particle is approached the 
velocity drops so that gas sticks to the surface of the droplet. At positions inside 
the droplet the velocity is the liquid velocity. The local gas velocity is denoted 
by vg and the local liquid (or solid) velocity by up. The temperature and density 
fields are similar to the velocity field. One difference is that the density is dis- 
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continuous a t  the surface: constant at  pp on the liquid side, and equal to pg on 
the gas side. As time proceeds, the particles move past the cross-section and 
positions previously occupied by liquid are now occupied by gas. The velocity 
and all other properties have changed appropriately. From these considerations 
we see that the two-phase flow is essentially unsteady and three-dimensional in 
its detailed structure. 

X x+Ax 

FIGURE 2. Gas-phase control volumes. 

I x+Ax 

FIGURE 3. Particle-phase control volume. 

The usual differential equations expressing the conservation laws are valid 
throughout the entire flow field of course, but as already noted, it is impractical 
to seek a detailed solution. Instead, the flow will be describedin terms of averages. 
It is also desired to obtain differential equations which relate the averages. 
These equations then express conservation principles for the average properties. 
Actually the process is turned around; the local conservation laws will be inte- 
grated over a control volume (and eventually time-averaged), and then averages 
defined so that they are a simple term in the integrated conservation law. For 
instance, a typical question to be answered would be how should the particle 
pressure be defined. To answer this we will look at  the integrated form of the 
momentum conservation law and define the particle pressure so that it is a force 
which changes the momentum of the particle material. 

Figures 3 and 3 illustrate several choices of control volumes which are of 
interest in two-phase flow. The one-dimensional flow is in the x-direction and a 
circular cross-section of area A is considered. The gas-phase control volume is 
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defined as the region between end planes at  x and x + Ax, which is occupied by 
gas. This control volume resembles a piece of Swiss cheese where the holes 
represent regions occupied by the particles. The planes x and x + Ax are stationary 
but the holes move with time. Gas enters and leaves by flow through the end 
planes and also by condensation or vaporization through the holes. In  the deriva- 
tions, it will be necessary to integrate over the region of the control volume. This 
will be done by first integrating over the ‘gas cross-section’ A ,  and then over the 
x-direction. The region A,  is the portion of the cross-section occupied by the gas; 
that is, the total cross-section A excluding the holes for the particles. A con- 
sistent nomenclature is used where all regions which are cross-sections perpendi- 
cular to the flow are denoted by A and all particle surfaces are denoted by S. 

The particle-phase control volume consists of the sum of disjoint regions 
between x and x+Ax which are occupied by particle material. This region 
consists of many (a finite number) spheres which lie completely inside the planes 
at x and x + Ax plus the truncated portions of spheres which are intersected by 
these end planes. The spherical portions are moving at the appropriate particle 
velocity. The flat circular portions at  the end planes do not move in the x-direction 
but may be increasing or decreasing in size depending on whether the particle is 
approaching or leaving the end plane. Liquid or particle material enters or leaves 
the particle control volume by flow across the circular portions at the end planes. 
Vaporization or condensation may also occur across the particle surfaces. Again 
it is convenient to define a particle or liquid-phase cross-section A ,  as the portion 
of the total cross-section occupied by particle material. The sum of A ,  and A ,  is 
the total cross-section A .  

The mixture control volume is the entire region between x and x + Ax with 
cross-section A .  It is simply the sum of the gas and particle phase control volumes. 
The region is fixed in space and both gas and particle material enter and leave 
through the end planes. 

3. Properties for the gas-phase continuity equation 
The properties appearing in the continuity equation for the gas phase will be 

discussed in this section. The derivation is performed by applying the integral 
form of the continuity equation to the gas-phase control volume. A differential 
equation is then obtained by introducing definitions of area-averaged properties 
and limiting the length of the control volume to zero. Next, the equation is time- 
averaged because of the unsteady nature of the flow. The final step is to show that 
the time-average of (an area-averaged property) is equal to the area-average of 
(a local time-averaged property). When this is done the variables in the gas-phase 
continuity equation are well defined in terms of averages of the local flow field 
variables. 

The integral form of the continuity equation for a control volume V(t)  with 
surface S(t)  moving with an arbitrary velocity v, is given by Thorpe (1962), 
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In  this equation p and v are the local density and velocity while n is the outward 
normal vector from X. Applying the equation to the gas-phase control volume 
gives 

The left-hand side is the rate of accumulation of matter within the control 
volume. The first term on the right-hand side is the net flow into the control 
volume through the ends at  x and x + Ax. The corresponding integrals over the 
sides are taken to be zero because of the assumed one-dimensional nature of the 
flow. The second term is the summation over the individual particles of the gas 
flux into the gas phase by vaporization or condensation. 

The equation is simplified in the following manner. On the left-hand side the 
time derivative is taken inside the integration over x and the integral is then 
estimated by the mean-value theorem for integrals. Thus 

where xo must lie between x and x+Ax. Next, an area average is defined and 
introduced into the first two terms 

(3.2) 

(Here and subsequently, vertical strokes are used to denote area averages, while 
time averages are distinguished by the conventional symbols.) The continuity 
equation is divided by Ax and the limit Ax+O is taken. During this process xo 
takes on the value x. Then 

In this equation $ represents the rate at which mass is added to the gas phase 
from the particles per unit length of flow. Therefore 

1 $ = - lim - C pg(vg-vs).ndX. 
Ax+OAx i jSpi 

(3.4) 

The flow field is inherently unsteady, and it is therefore necessary to time- 
average (3.3) in a method similar to turbulent-flow theory. It will be necessary 
to use only some elementary concepts as discussed in chapter 1 of Hinze's (1959) 
book. The time-average of a variable which is a continuous function of x and t 
onlv is defined as follows: 

(3.5) 

The average is assumed independent of further averaging 
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Other properties of the average are 

((f+ 9 >> = ((f >> + ((g)), (((((f>> * 9))) = ((f>> * ((g)), 

The last equation is true if the unsteady phenomena has a characteristic time 
considerably longer than the time required to form suitable averages to. The 
fluctuation f "  of a function of x and t is defined by the following equation: 

f = <(f>> +f". (3.6) 

(3.7) 

The time-average off"  is zero and the following useful relation may also be 
proved : ((fs>> = ((f >> ((9)) + ((f"s">>. 

Returning to the continuity equation (3.3), we integrate from t to t+ to  and 
divide by to to obtain the result 

(3.8) 

It is possible to apply (3.7) to the product terms in the equation above and obtain 
an equation where the fluctuations appear explicitly. As an example, the term 
on the left-hand side would be 

a a 
~ ( ( 4 l l P o l l > >  = - ~ ~ ~ ~ c T l l P c T ~ o z l l > > + ( ( ~ > > ~  

In  this equation the variables are first averaged across the area perpendicular 
to the flow and then time-averaged. The assumption that the particles are dis- 
persed has not yet been used, and (3.8) is valid for any flow, dispersed or not. 
From an experimental standpoint, the density profile pg must be measured across 
the section at one instant in time; such a detailed knowledge would be hard to 
obtain. Then the instantaneous area-averaged density could be computed. A 
continuous series of measurements would be required in order to compute the 
time average. This will not be pursued since it is desirable to define the properties 
of a two-phase flow in the opposite way; that is, the area average of a time- 
averaged local property. This property would be constructed by obtaining first 
the local time averaged values, a concept already familiar from turbulent flow 
and more easily measured than instantaneous properties. Performing an area- 
averaging then gives the final property. Another reason for this approach is that 
the local Reynolds stresses, a well-established concept, will come out of the 
development for the momentum equation. If the order of averaging were not 
interchanged, this identification could not be made. In  making the interchange 
of the order of averaging we will find that the dispersed flow assumption is 
necessary. 

An example of the appropriate definition of gas-phase velocity is 

5% = Il((~oz>>ll- 
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This relation has a defect however. The local gas velocity vffz is only defined for 
times when gas occupies the position x, y ,  z but the time average (( )) was 
restricted to apply to functions defined for all x and t. This defect is corrected by 
introducing another time-average process for functions which are not defined for 
all x ,  y ,  z and t. 

The local instantaneous gas velocity is shown in figure 4 as a function of time. 
When a particle occupies the particular position, vffx is undefined. A local time- 
average for such a function can be defined as 

M A  

2 \ 7 -  
A 
8 
.3 

3 

P 
Time, t 

FIQURE 4. Velocity history. 

The integrand is now taken to be zero when a particle passes x, y ,  z and the time 
interval to, is that portion of t to t +to when gas occupied the point x, y, x .  Also, 
(f,) is considered to be defined only in the regions where fg is defined. The new 
definition actually includes the old (( )) average as a special case. All the relations 
given previously for the (( )) average also hold true for the new time average so 
long as fg and g, are defined in the same regions of time and space. The local 
fluctuation is denoted by a single prime. Then 

For the product of two functions an equation analogous to (3.7) is 

In  the same spirit it is possible to denote the deviation of a property from the 
area-averaged value defined earlier in (3.2) : 

f ( x , y , z , t )  = l l f l l  (X,t)+f*(X,Y,z,t),  (3.11) 

the deviation being denoted by f *. 
In  order to convert (3.8) into a more meaningful and useful form, we want to 

interchange the order of the time and area-averaging processes. Thus, we seek 
to prove the relation 

((IlfII)) = II(f)ll. (3.12) 

In order to derive this, we first consider a particular cross-section of the flow field. 
The part of the cross-section occupied by gas is denoted by A,(x,t). As time 
proceeds, different portions of the cross-section are occupied by particles, as the 
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original particles have moved downstream and new particles have moved into 
the cross-section from upstream. Figure 5 shows A,(x, t )  for a particular choice 
of x and for a time interval t to t + to. The black regions in figure 5 represent the 
passage of a particle past the cross-section. The time to,(x, y, z, t )  is the length 
from the front face of the cylinder to the back face excluding the distance through 
the ‘particles’. The region in the cylinder excluding the black portions will be 
called R; it is the domain in y, z, t when gas properties are defined. An important 
auxiliary equation can be obtained by computing the volume of R in two different 
ways : 

An additional relation is obtained by computing the integral of any gas-phase 
property f by two different methods 

to<(A, Ilfll)) = A &7o(f) 11. (3.13) 

By using the two equations above together with (3.7) and (3.10), one may show 

vol R = t o  ((A,)) = A 11 tog11 * 

that 

u 

FIGURE 5. History at a cross-section. 

If the second term on each side of this equat-ion is zero, then we have the desired 
relation given by (3.12). 

The second term on the left-hand side could be neglected if the fluctuation in 
the area is much smaller than the average area 

A;/((A,))  = 0- (3.14) 

Since the sum of the liquid and gas cross-sections is the total flow area, a constant, 
the fluctuations A: are actually compensations for fluctuations A; caused by the 
particles. If the number of particles within the cross-section A, is much larger 
than the fluctuation in the number of particles, then the condition above could 
be expected to hold. The second term on the right-hand side can be neglected if 

t~o / I l tgo / l  = 0. (3.15) 

Again this is related to the presence or absence of a particle at a point during the 
time-averaging process. If the particles are numerous and dispersed, then they 
will pass the point at regular intervals throughout the cross-section, and the 
deviation t:o will be much smaller than the area-averaged valve. In terms of 
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figure 5, these equations are true if the cylinder contains numerous black dots 
dispersed uniformly without holes or voids or bunches, i.e. in a continuous 
fashion. There is an analogy here with the continuum hypothesis in fluid 
mechanics that molecules are dispersed in space in a uniform manner. 

The inversion of area and time averaging, as in (3.12) is possible when (3.14) 
and (3.15) are true. On the other hand, we may stipulate that (3.14) and (3.15) 
are criteria to be met in order to take a continuum viewpoint of the two-phase 
flow. In  words, average properties of a two-phase flow may be formulated over 
an area and during a time interval if there are numerous dispersed particles 
within this time-space region. It should be noted that the control volume cross- 
section can be chosen arbitrarily and does not necessarily end at  a physical wall. 

We can now conclude the derivation of the continuity equation. By the 
assumption above, fluctuations in the gas cross-section A; are negligible. Then 

A ,  = ((A,)) + A; N (A,). 

Substituting this relation, (3.10) for the local time averages and inverting 
according to (3.12) yields the continuity equation: 

where 
1 

The second term on the right is the product of the local density and velocity 
fluctuations. It is usually assumed in turbulence work that fluctuations in the 
density are negligible compared to the average density. Making this assumption 
here reduces the equation above to the usual form for one-dimensional flow 
except that an additional term (($)) accounts for matter added to the gas phase 
from the particle phase. In  order to make the notation compact, the averaged 
properties of the two-phase flow may be denoted by N . Then (3.16) is written 

(3.17) 

where the gas density p ,  is well defined by time-averaging the local gas density at  
each point and then performing an area average. Likewise, a ‘mass-averaged’ 
velocity G, is well defined by time-averaging the local gas velocity, multiplying 
by the density and averaging across an area. 

We conclude this section by summarizing the major assumptions under which 
(3.17) is valid. First, the flow is quasi one-dimensional with particles of a finite 
size. The flow is dispersed in that the criteria given by (3.14) and (3.15) hold. 
The area A and time to chosen for the averaging processes are arbitrary as long 
as (3.14) and (3.15) are satisfied. Finally, it  is necessary that fluctuations in the 
gas density are negligible. 
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4. Properties defined by the momentum equation for the gas phase 
The momentum equation is manipulated in a manner similar to that used for 

the continuity equation in the preceding section. The integral form of the 
momentum equation is 

pv(v-vs).nd8+ (4.1) 

The stress tensor is denoted by Q in this equation. When the x-component of this 
equation is applied to the gas-phase control volume, one obtains 

The left-hand side represents the rate of accumulation of momentum in the 
control volume. Terms on the right-hand side represent, in order, net momentum 
flux through the end plane, x-component of the forces on the end planes, the 
momentum flux into the control volume from the particle holes, and finally the 
sum of the x-direction forces acting a t  the particle holes. The viscous stress and 
momentum flux through the side walls of the control volume are assumed to be 
negligible. Thus the theory developed here is analogous to quasi one-dimensional 
gas dynamics. It is not inconsistent, however, to account for the effects of 
viscosity when considering the flow near the particle surface. 

Proceeding as before, the area-averages are introduced. The right side is 
estimated by the mean-value theorem, and the equation is divided by Ax so that 
the limit Ax+ 0 can be applied as a final step. There are two terms which occur 
because of momentum transfer between the particles and gas. The first is a drag 
from the integration of the forces acting at the gas-particle surface: 

n 

The second interphase-momentum-transfer term accounts for momentum 
carried into the gas phase by mass vaporizing from the particles: 

1 - lim -x pgvgx(~g-~s).nd8. 
Ax+O Ax i /Sp,  

(4.3) 

The expression p,(v, - v,) . n is the mass flux of gas leaving a point on the particle 
surface, and vgx is the x-component of the gas velocity (momentum per unit mass) 
a t  the particle surface. Since the viscous boundary condition requires that the 
tangential velocity components match across a phase discontinuity, vgz is closely 
related to the velocity of the particles. If one assumes that the vaporization 
(or condensation) is uniform around the surface of the particle and that the 
particle surface is moving in uniform translation (no distortion of the particle), 
then the expression (4.3) is equal to 

$ is the mass transfer term previously defined, and Ilvfxl] is the area-averaged 
particle velocity. 

* lIVfzIl* 
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The derivation of the momentum equation is continued by introducing the 
simplifications and definitions discussed above. In  terms of area-averaged 
quantities, the momentum equation reads 

(4.4) 
a a 

( 4 7  IIPg%ll) = - ( 4 7  IIP,Gcll+ A, II qmll) + 1c. I I~Pzl l  - K T -  

The xx-component of the stress tensor would usually be replaced by the pressure. 
Equation (4.4) is next time-averaged and then (3.10) and (3.12) are used to invert 
the order of the time and area-averaging. Again it is assumed that fluctuation in 
the area A: and density p', are negligible compared to their respective time- 
averaged values, e.g. 

((4 IIPgfl:zll)) = ( (A, ) )  ((llP,.2lD 
= ((A,)) I1 (P,V2,)0 

= ((A,)) II (47) (.,z>2 + (P,) (~',z~',z)ll 

= ((A,)) ll(P,)ll (ll(%J211p + ll(~',z%z)llp). 

The final momentum equation has dependent variables which are area-averages 
of (time-averaged local properties) : 

(4.5) 
a 
at - (((A,)) ll(P,)ll II (%z)Ilp) 

a 
- - ax {((A,))  II (P,)lll+ ((1c.)) II (~Pz) l l  - ((C)). 

In  this equation we have been able to display explicitly the area-average of the 
local Reynolds stress. The Reynolds stresses do not appear if the order of time 
and area-averaging are not interchanged. When the gas flow is turbulent, the 
Reynolds stress is, of course, very important, but even for laminar flow the 
inherently unsteady character of the flow means that this term is not zero. Later 
in the general discussion it will be shown that the Reynolds stresses can be 
neglected in dilute flows. 

The velocity variable in the continuity equation was the area-average weighted 
by the density ~ ~ ( v , ~ ) ~ ~ ~ .  This variable also appears on the left side of the 
momentum equation above; however, on the right side, the velocity is squared 
before being averaged over the area / / ( V , ~ ) ~ ~ / I ~ .  For simplicity one would like to 
relate these averages by 

II(2$,)1/2p = ll(%x)211p* (4.6) 

This equation would be true if the velocity profile is relatively flat across the area 
chosen for averaging as in figure 7 6 .  The parabolic shaped profile in figure 7 a is 
an example where this would not be valid. In  this case a factor might be inserted 
in (4.6) to account for the profile shape. 

The particle density has been depicted as uniform in both figures 7a  and 7 b ;  
this is necessary to satisfy the criteria for interchanging the averaging processes. 
Segr6 & Silberberg's (1962) experiments in Poiseuille flow show that the particles 
tend to migrate to a position 0.6 of the distance from the centre. Turbulent flow 
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studies by So0 (1 965) found considerable changes in particle density across the 
tube. In  these cases we cannot area-average across the entire tube but we could 
make a local area-average if the criteria (3.14) and (3.15) can be satisfied. In  a 
way this is similar to the time-average where f is a function of t even though an 
average was taken from t to t + to. The local average depends upon the position 
in the cross-section about which A was taken, and an a priori prediction of the 
particle density or velocity profile would be a two-dimensional problem. This is 
outside the scope of the present discussion. 

5. Flow properties from the particle-phase continuity and momentum 
equations 

Equations for the particle phase may be obtained by two different approaches. 
The direct approach of considering the particle-phase control volume was taken 
by Panton & Oppenheim (1966) and is somewhat longer than the method used 
here. In  this paper the equations will be derived for the overall gas-plus-particle 
mixture. Then equations for the particle-phase can be developed as in the pre- 
ceding sections. This can be done since it was assumed that there is no mass, 
momentum, or energy associated with the interface between the gas and particle 
material. 

The derivation of the continuity equation closely follows the development 
given in Q 3. The cross-section of the control volume is A and integrals over this 
region are split into the sum of integrals over A,  and A,. Applying the integral 
form of the continuity equation to the mixture control volume yields 

x+Ax 
= --IAvPQvg.ndA l x  -IA,  p,v,.ndA 

The integral over A ,  is actually the finite sum of integrals over the distinct 
particles. The summation sign will not be used but instead we will note that A ,  
is a disjoint region. Performing the same operations as in $ 3  produces the 
continuity equation for the mixture: 

a 
- at ((A,) ll(Pg)ll +(A,)P,) 

a 
= -- ax ((A,) ll(P,)Il ll(%!)ll +(A,)P, ll(~,x)ll)* (5.1) 

I n  this equation the time and area-averages of properties of the particle material 
are defined analogously to those for the gas-phase. Also the density of the particle 
material has been assumed constant. Subtracting the gas-phase equation, (3.16), 
from (5.1) gives the final particle-phase continuity equation: 

a a 
2 ( P P ( 4 ) )  = -ax (PP(AP) ll(~,z>ll) - (31.). (5 .2 )  

The vapour added to the gas-phase from the particle holes appears in this equa- 
tion as material leaving the particle phase. The velocity of the particle phase is 
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defined by forming local time averages of the velocity of the particle material at  
each point and then averaging over the cross-section. 

The momentum equation will be considered next. The integral momentum 
equation (4.1), written for the mixture control volume, is 

In  the last term (a;. n), is the x-component of the stress on the liquid within the 
particle at  the plane x on x + Ax. It is reasonable to neglect the normal viscous 
stress and replace this by the pressure of the liquid. A typical particle cut by an 
end plane is shown in figure 6 .  

Another force, the surface tension, must also be associated with the last term 
although it does not appear explicitly. The surface tension is idealized to act at  
the interface of the gas and liquid in order to provide mechanical equilibrium of 
the curved surface. In  reality it is a very thin region of high stress. Assume 
momentarily that the particle in figure 6 is stationary. Mechanical equilibrium 
requires that the integral of (a,. n), over the cross-section A ,  plus the surface 
tension force be balanced by the external gas pressure times A,. Hence the last 
term in (5.3) is not of the order of magnitude of A,p,, which might be quite high 
because of the high internal pressure of the droplet, but of order A,p,. After 
manipulations of (5.3), the last term will represent the pressure force for the 
particles . 

The derivation of the momentum equation follows closely the path taken 
in $4. There are some differences in how the particle pressure is handled and 
therefore certain intermediate steps involving this term will be discussed. The 
area-averaging definition is introduced into (5.3), the equation divided by Ax, 
and lim Ax --f 0 is taken. After these operations, the particle pressure term is 

This is not just the average internal pressure but still requires that the surface 
tension be included. 

Another question arises a t  this point. The term above is the gradient of the 
aggregate pressure (plus surface tension) within the particles. Now when a 
particle is accelerated there exists a pressure gradient within the particle in the 
direction of the acceleration. Does the term above then depend upon the state 
of acceleration of the particles? It is demonstrated in the appendix that the 
gradient within a single particle is not important and that the following holds: 
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where pic is the average pressure across the cross-section (including surface 
tension) at the centre of the particle i. This equation says that instead of averaging 
the local pressure within a droplet one may substitute the average pressure of the 
central cross-section of the particle. As discussed before, pic is equal to the gas 

Forces on static particle 

External 
pressure 

x = o  

FIGURE 6. Particle-phase pressure. 

pressure on the outside of the droplet when there is no motion. When there is 
motion, the average pressure around a particle, and thus pic, deviate slightly 
from the free-stream gas pressure. In  any event, the particle pressure defined 
here is of the order of magnitude of the gas-phase pressure, its exact value 
depending upon the details of the local flow around each particle. 
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The final steps in deriving the momentum equation are to time-average the 
entire equation and then reverse the order of averaging. The result is 

In this equation the particles are viewed as a continuum which co-exists with the 
gas-phase. It includes two terms, the Reynolds stress and the particle pressure, 
which would not occur if one formulated the equation of motion for a 'typical' 
particle. In  their paper Van Deemter & Van Der Laan (1961) proposed that some 
sort of particle-phase Reynolds stresses should be included for turbulent flow in 
analogy with single phase flow. Tien (1961) made the same argument for the 
turbulent transport of energy. In  (5.5) the Reynolds stresses have been explicitly 
defined in terms of the local flow-field variables. 

Two different area-averaged velocities appear in (5 .5) ,  as occurred in the gas- 
phase equation. In  the formulation of a practical problem it is necessary to relate 
the different averages. The least complicated would be 

(5.6) I1 (vze>211 = II (v2Pz)ll. 

Figure 7 can be used to help obtain a physical understanding of when this is 
permissible. If there is a parabolic gas-phase velocity profile, one would expect 
a profile in the particle velocities also since the drag force strongly couples the 
two phases. In this case (5 .6)  would not be true without inserting a coefficient to 
account for the exact nature of the profile. The opposite situation is where a flat 
gas velocity profile would usually give a flat particle profile and (5.6) could be 
safely assumed. Turbulent gas flow would give rise to considerable fluctuation in 
the particle velocities and the product W & V > ~  would be important. Even with 
laminar gas flow the particle velocities might fluctuate because slight variations 
in the particle sizes and shapes would cause different drag forces. This aspect 
needs careful consideration in a practical application since in many instances 
particles are nominally of a single size, but there is actually a large difference 
between the largest and smallest. It will be shown later that the Reynolds stresses 
may be dropped for dilute flows where the particles are in fact a uniform size. 

19 Fluid Meoh. 31 
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Equation (5 .5)  can be simplified further assuming that (5.6) is valid. Theleft- 
hand side and the f3st term of the right are differentiated as products. Then the 
continuity equation is multiplied by I] (vfz)\l and subtracted. The result is 

a a 
( ( 4 ) ) P e  (3 II(%>ll+ l l ( ~ f x ~ l l  ll(%)ll] 

a 
= -- ax {((Afx))P8 l l (&4x)l l+ ((AfX)) l l ( P l C ) I l ) +  ((EJ). (5.7) 

- 

t 
A 
i 

r 

(C) ( d )  

FIGURE 7. Velocity profiles. 

Note that there is no mass-transfer effect in (5.7). From the point of view of a 
particle, the vaporizing material takes with it its momentum and does not 
affect the motion of the particle. If the vaporization had not been assumed 
uniform around the particle, there would be a net reaction force on the particle. 

The particle and gas phase are considered as two interacting but co-existent 
continua in the continuity and momentum equations given above. Quasi one- 
dimensional flow was assumed; however, there was no restriction as to the volume 
occupied by the particle phase. The equations are valid for flows where the 
particles are dispersed. Criteria for ‘dispersed flow’ are that fluctuations in the 
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cross-section A; and particle cross-section A', are negligible compared to their 
respective time-averaged values. Another important assumption was that gas 
density fluctuations p; are small compared to the average value. The variables 
which describe the gas or particle phase were shown to be well-defined by time- 
averaging the local flow variable and then averaging across an area perpendicular 
to the flow. 

6. Energy-equation properties for the particles and the mixture 
The most useful form of an energy equation for the particles is the thermal- 

energy equation. In  order to follow the procedure used in the preceding sections, 
the integral form of the thermal energy equation for a moving control volume 
is needed. 

Leibnitz formula is applied to the internal energy per unit volume pe:  

Now the differential equation for the change in thermal energy is 

a 
at 
- (pe)  = - V .  (pev )  - V .  q - p V . v - ~  : V v .  

Equation (6.2) is substituted into (6.1), and the divergence theorem applied to 
yield the final result: 

Thermal energy is not conserved. The last term shows two mechanisms to 
produce thermal energy. The first p ( V .  v)  is that portion of compression work 
which increases the internal energy. Since the particles are incompressible, 
V . v = 0 and this term may be dropped. The second term T : V v  is the shear work 
which increases the internal energy. It is also permissible to neglect this term in 
low-speed incompressible flow. 

The thermal-energy equation applied to the particle control volume is 

Recall that S,, stands for integration over all the particle surfaces. The outward 
normal from the particle is n, whereas the inward normal is n. 

The properties in the fist term on the right-hand side of (6.4) are evaluated on 
the liquid side of the interface. It is more useful to have the gas-phase properties 
appear, since heat-transfer experiments would give the heat transfer from the 
gas to the particle qg, not q,. The conservation of total energy across a jump dis- 
continuity such as the particle surface is 
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The change in kinetic energy of the vaporizing material is taken to be small 
when compared to the change in internal energy. Dropping these terms and 
rearranging so that the flow-work concept appears, one obtains 

{P,(VP - vs) (er +P,/P/) + 9,). n, 

= - { P g ( V g  - vs) + ag + (Pg-P,)%l. n, (6.6) 

where ho is the specific enthaIpy of the gas phase. Because liquid densities are 
high, the liquid side flow workp,,/p, can be dropped when compared to the internal 
energy. The extra term on the right is the work done to distort the surface. When 
(6.5) is substituted into (6.4), this term is 

If the pressure change across the surface is uniform and the velocity constant, 
then this term is zero. 

The heat flux vector in (6.5) consists of thermal conduction and transport by 
diffusion 

q = q0 + 2 Pk(Vk  - vs) hk, 
k 

where k indicates a particular species, and the summation is over all species 
present. Thus (6.5) now reads 

[ ~ r ( v r  -vs) ep + qpI -ne = { P , ( v ~ - v ~ )  hg + Z ~ k ( v k  - v g ) h k  + @} - n- 

This equation may be simplified further for the special case when only one 
species is vaporizing or condensing. Consider two species: an inert A and the 
vaporizing species B. The mass flow across the surface is entirely due to the mass 
flux of 3: 

Species A does not cross the surface. Actually A could stand for another mixture 
itself. Then 

k 

Pg(vg - vs). = PdVB - vs) n* (6.7) 

PA(vA - v,). n = 0. (6.8) 

P g h g  = P A ~ A + P B ~  (6.9) 

The enthalpy of the gas mixture is given by 

By using (6.7), (6.8) and (6.9), (6.6) will reduce to 

{Pfe,(vf - vs) + qf>* n, = - (Pg(vh- vs) hBS + qt)}*n* (6.10) 

In  this equation hBs has replaced h, in order to emphasize that it stands for the 
enthalpy of species B (the liquid) in the gaseous state a t  the droplet surface. 

The particle thermal-energy equation (6.4) is modified by inserting (6.10) : 
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Manipulation of this equation follows the same path as above: the mean-value 
theorem used on the left, the area average defined, and the limit Ax -+ 0 performed 
after dividing by Ax. Heat transfer from the gas to the particles per unit flow 
length is called Q, where 

(6.12) 

Energy transported with the mass flux is simplified by assuming the particle 
surface temperature is uniform; not only for each particle but among the particles 
themselves: 

1 

Ax-@ Ax / S p i  
-$hBs = lim - p,(v,-v,).nh,dS. (6.13) 

With these operations the result is 

The final thermal-energy equation for the particles is found from (6.14) by 
time averaging and inverting the averaging order. The result is 

In the first term on the right-hand side the convection of thermal energy appears 
11 (v,J (ee)ll, whereas on the left 11 (ee)]l occurs. Again for simplicity one would 
like to let 

II (vex) (ee>ll = ll(vez)Il I/ (ee>ll. (6.16) 

This situation has been encountered previously in the momentum equations, and 
the arguments given for the validity of (5.6) can be adapted to this case showing 
that (6.16) is valid for flat velocity and temperature profile. The second feature 
of (6.15) is the turbulent transport of energy by fluctuations. This is the analogue 
of the Reynolds stresses in the momentum equation. 

The substantial-derivative form of the thermal-energy equation is found by 
assuming (6.16), differentiating (6.15), andusing the particle continuity equation: 

+ Q-@{hm- II (ee)ll}- (6.17) 

The last bracket is the heat of vaporization hfg if two assumptions are made: the 
surface temperature is the same as the average particle temperature and the 
liquid internal energy is approximately equal to the enthalpy. 
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The second major topic of this section is the energy equation for the gas- 
particle mixture. The general equation for a control volume is 

- J n.{q+pv+7.V}aS. (6.18) 
S( t )  

The mixture control volume is used in applying the equation. Integrals are split 
into portions referring to  the liquid and portions referring to the gas. The estab- 
lished pattern is followed, utilizing the mean-value theorem, dividing by Ax and 
limiting Ax + 0 : 

a 
~ { 4 I l P f f e f f l l  +SllPfffl",l )+Acpt.(lleAl + B l l ~ %  11 

a 
= --{A,( ax IIPff~gzhffIl +tllP,~ffz$ll) 

+ A < P A  Il%hf II + 8 Il%% II 1 + II %zll+ i .  I1 7 * vffll}* 

The last two terms are the heat transported in the gas phase and the shear work; 
similar terms in the liquid have been dropped. The gas phase was taken as 
inviscid. Consistent assumptions of the same order are that no heat conduction 
or diffusion occurs so these gas-phase terms will be dropped also. 

When the equation above is time-averaged and the order of averaging inter- 
changed, a great many fluctuation terms will remain. Since the kinetic energy is 
frequently a small contribution, only fluctuations in thermal energy terms are 
retained. Then 

a 
-C(47>ll(eff>ll at (Il(~ff>llp+811(ZIg>211 )+ (Af>Pf( ll(e8>ll+ Sll(%>211 )I 

= --{(~ff)ll(Pff>ll ax (II(vffzhff>llp+ Il%z%>ll ++IJ(~ffz>(~~>211) 
a 

+ (A,)P,( II (v,z> (hf>ll+ I1 (v;zh;>ll+ Q I1 (,%z> (Vf>"l )I. (6.19) 

Equation (6.19) is the total-energy equation for the entire mixture. All the 
different types of property definitions have been encountered and discussed 
previously. For steady flow the left-hand side vanishes and the right-hand side 
may be integrated to show that the bracketed term is constant. As a final remark, 
it is noted that a gas-phase energy equation could be derived by eliminating all 
the particle terms employing the particle-phase equations given previously. 

7. Thermodynamic relations 
The conservation equations must be supplemented by thermodynamic rela- 

tions. The approach has been to define properties for the gas and particle phases 
as area-time averages of the local values. The result is that the particle and gas 
phases are co-existent but interacting continua. They interact when they are 
not in equilibrium. 

Considering co-existent continua, the natural definition of density of the gas 
phase would be the mass of gas in a unit volume of space. This is given the symbol 
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8,. The relation between the ‘continuum’ gas density and the actual local gas 
density is 

The time-averaged form where fluctuations of p, are negligible is 

SOAX = IIPull A,. 

(8g)Ax = ll(P,)ll (Au)* (7.1) 

Another reason for the definition of 8, is to note that II(p,)II and (A,) always 
appear together in the conservation equations previously given. Since A ,  is a 
constant, (7.1) will replace two variables by one. The same reasoning can be 
applied to the particle phase to define a continuum density 8,: 

The following useful relation is valid when spherical particles with a number 
density n are used: 

8, = mn = +nr3pfn = pf A,/Ax= (1  - A,/A,)p,. (7.3) 

This equation will be used later in the general discussion. Although the particle 
material is incompressible, the particle ‘continuum’ is not since rJP changes 
with A,. 

The gas-phase pressure appears in the momentum equation (4.5). Like the 
density it is associated with the gas cross-section A, since this is the area over 
which it acts. The ‘ continuum’ gas-phase pressure is denoted by nu and defined 
so that 

Tff Ax = 4 7  IIP, I/ - 

n p  Ax = A ,  I l ~ i C l l .  

(7.4) 

The particle-phase momentum has a similar structure; therefore the particle- 
phase pressure is defined as 

(7.5) 

The next question to resolve is how the new definitions are related in an 
equation of state. The gas phase is a perfect gas: 

Po = P,RTo. 

This equation is time-averaged and area-averaged with the usual assumption 
that density fluctuations are small. Upon multiplying by (A,)/AX, the final 
equation is 

This is the same perfect-gas law in terms of the new continuum properties. 

(fl,) = <~g)Rll<Tu)llp’ (7.6) 

The caloric equation of state for a gas with constant specific heat is 

h, = Cp TQ + h R E p  

This equation may be averaged to yield 

11 ( h f f ) l l  p = ‘P 11 (To>\l p -k hREF* 

Equation (7.7) completes the gas-phase thermodynamics. 

(7.7) 
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The particle material is incompressible; therefore, there is no thermodynamic 
relation between the density and the pressure. The energy and the temperature 
are related with c denoting the specific heat: 

ep = cTf+eR,,. 

It is unnecessary to distinguish between the specific heat a t  constant pressure 
and at constant volume since they hardly differ. Averaging the equation above 
gives 

II<ee>ll = cll(Tt>ll + e m m  (7.8) 

Thermodynamic equations for the mixture are not very useful; however, they 
will be discussed to demonstrate the consistency of the formalism. The pressure 
of an ideal mixture is the sum of the partial pressures: 

n, = n-, + nQ. 

The density is the sum of the component densities: 
(7.9) 

8, = 8,+8Q. (7.10) 

The enthalpy is given by 8, h, = 8, hf + 8*hg. (7.11) 

Equilibrium between the phases implies that the velocities and temperatures 
are the same and no mass transfer is occurring. When the droplets are stationary 
with respect to the gas, the average internal particle pressure is the same as the 
gas pressure as noted in 3 5.  Thus 

mrn = (A,/AJPQ + (AQ/AJ.P~ = PQ. 

The equilibrium density is given by (7.10), which does not change. In  mixture 
thermodynamics the mass fractions are frequently introduced. They are simply 
the density ratios 

Dividing (7.10) by S,, expresses the rule that the sum of the mass fractions is one. 
The specific heats and temperatures may be introduced into equation (7.11). 

If the two phases are always in equilibrium, then an overall mixture specific heat 
may be defined. Since there is mass transfer between the phases as equilibrium is 
maintained, the mixture specific heat contains a term involving the heat of 
vaporization. For this reason, the definition is cumbersome and does not really 
simplify the work. If there is no mass transfer as for solid particles, then the usual 
formula for the specific heat of an ideal mixture results. 

In  most flow problems the fluid mechanics events are so fast that the phases are 
not in equilibrium. Analysis using equilibrium thermodynamics have generally 
disagreed with the experiments. For example, a controversy about the speed of 
sound in a mixture of stream and water droplets is discussed by Collingham & 
Firey (1963). 

The particle phase pressure n, and density S, are both variables; however, 
there is no equation of state to relate them. The pressure n-, is indicative of the 
average pressure within the particles (including surface tension). This in turn 
depends upon the external pressure exerted on the droplet by the gas and also 
upon the details of the flow field around the particle. As previously noted in the 
absence of relative flow n, is equal to ng. It would seem reasonable to use this 

~,lJ?n, 8QPrn. 
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assumption even for disequilibrium cases and ignore the flow field effect. This 
assumption takes the place of the missing equation of state. 

The number density n and the mass of a particle m are not used explicitly in 
the conservation or thermodynamic equations. It is necessary to  have a know- 
ledge of the number density in order to formulate the interphase transport terms 
$, P and &. An equation for n and m can be obtained by substituting (7.1) and 
(7.3) into the continuity equation (5.2): 

Consider the special case where there is no mass transfer, then 

(7.12) 

However, this equation does not depend upon m; therefore, it must be true 
whether m is constant or not. If the flow is steady then (7.12) shows that the 
particle flux (n) I( (vez>ll is constant. Equation (7.12) expresses the conservation of 
the number of particles; if the particles break up or coalesce, then a source term 
would appear on the right side. Another equation is found by substituting (7.12) 
from the preceding equation: 

Physically this is a statement that the mass of a particle changes because of the 
vaporization or condensation at the surface. 

8. General discussion 
Investigations of two-phase flow usually begin by assuming that properties 

such as the particle-phase velocity exist. A new approach was taken here, where 
the particles are viewed as macroscopic bodies, either solid or liquid, embedded 
in a gas. The conservation equations of continuum fluid mechanics are assumed 
to apply to the flow field locally, both within the particles and through the gas. 
Next, control volumes for each phase are defined and integral forms of the con- 
servation equations applied. By inspecting the equations, the proper area- 
averaged properties may be defined so that they are meaningful terms in the 
physical conservation laws. Because the detailed flow is inherently unsteady, i t  
was necessary to take the time average of the equations. The final step was to  
interchange the order of the time and area averages. This can only be done if 
certain criteria are satisfied. The final conservation equations in terms of the new 
properties contain several terms which have a different physical basis and inter- 
pretation than in previous work. 

The assumption that the gas and liquid material are locally a continuum can 
be examined by considering the flow through a high expansion rocket nozzle. 
Starting at  the throat the pressure is relatively high so that the mean free path in 
the gas is negligible compared to the particle diameter. The gas density drops as 
the flow expands and the mean free path assumes importance compared to a 
particle diameter. The conservation of material, momentum, and energy still 
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hold of course; however, the Navier-Stokes equations are questioned because 
temperature and velocity gradients compare with the mean free path. It turns 
out that Fourier’s heat conduction law and Newtonian viscosity can still be used 
in the conservation laws if only the boundary condition at  the particle-gas inter- 
face are modified. This is the slip-flow region. As the gas continues to  expand the 
free-molecule-flow region is encountered; the mean free path is large compared 
to the particle diameter. So far the major effect has been to change the nature of 
the gas-particle interactions. This is accounted for in the equations developed 
previously by changing the interphase-transport terms $, F and &. For instance, 
Crowe (1967) has recently discussed the drag coefficient of a particle in slip and 
free molecular flow. Another aspect of this example concerns the gas flow alone. 
In  continuum flow the collisions between molecules continually redistributes 
the momentum. As the gas expands and the mean free path becomes large, 
collisions are less frequent and in the rarefied limit, thermodynamic equilibrium 
is not maintained. Hamel & Willis (1966) have studied theoretically the free 
expansion of a jet using kinetic theory and introducing the concept that the gas 
has two temperatures, parallel and perpendicular to the flow. When the situation 
occurs, the model of the gas phase previously given breaks down and the equa- 
tions are invalid. Scott (1967) has reported experimental results which do not 
confirm the kinetic theory model, and this subject is a current topic in rarefied 
gas dynamics. 

The properties of each phase were defined as the area-average of the time- 
averaged local property. Special definitions of the averages were needed since one 
phase does not occupy the entire volume. Consider the conceptual process of com- 
puting the particle velocity a t  a given location x. The plane at x intercepts the 
particles forming a great many circular regions. Within the circles the liquid has 
some instantaneous velocity. It also has a time-averaged velocity which was 
computed by noting the liquid velocity as several previous droplets passed this 
position. The particle-phase velocity is computed by making an area average 
over all the circles of the time-averaged liquid velocity. Other properties of both 
the gas and particles phases are defined in a similar way. 

Conservation equations were developed where the variables were area-time 
averaged properties. During the manipulations it was necessary to reverse the 
order of averaging. The inversion could only be accomplished if certain criteria 
were met. I n  the gas-phase equations the criteria was that fluctuations in the gas 
cross-section were small; a similar criteria must be met by the particle fluctua- 
tions in the particle equations: 

A>/(Ac)  _N 0, Ab/(A,) 2: 0. 

These criteria are not independent since A ,  + A,  = Ax, a constant. It is illu- 
minating to recast the criteria in terms of the number density. The instantaneous 
properties in (7.3) are replaced by their time average plus the fluctuations; this 
gives one equation. Next, (7.3) is time averaged and divided into the first equation 
to yield 
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This equation shows that the criteria A>/(Ac)  N 0 is directly equivalent to small 
fluctuations in the number density. Another statement would be that fluctuations 
in the ‘continuum’ particle density S, are small. The equation above can be 
solved for the gas-phase criteria: 

This is the same relation to the number density modified by (Ae)/(A,). Even in 
non-dilute flows the portion of the cross-section occupied by particles is usually 
less than that occupied by the gas, so the gas fluctuation criteria is less severe than 
the particle criteria. In  fact, in the so-called dilute flows (Ae)/(Ag)+O and the 
gas-phase criteria is satisfied. 

The viewpoint that the particles and gas are co-existent continua has led 
previous workers to  define the density of each phase based upon the entire 
mixture volume, 8, and 8, in the notation used here. A new aspect introduced 
here is the continuum pressures, n, and n, based on the total mixture cross- 
section. The gas-phase equation of state in three variables was shown to be the 
same form as the perfect gas law in the local variables. Furthermore, if one substi- 
tutes the relations for the 6 and n into the conservation equations of the preceding 
sections, then they formally appear to be two sets of conservation equations for 
single phases with source-like interaction terms $/A,, P/A,,  &/A,. This substitu- 
tionreplaces thetermsp,, pg,pg,pp, A ,  and A,  with n,, ng, 8, and 8,. The variables 
are reduced by one and there is no longer any quantity to indicate whether the 
flow is dilute or not (i.e. (A,)/A,). 

The particle-phase pressure n, is interpreted physically as an average internal 
particle pressure. This is also a fresh insight. Previous workers have employed 
the interpretation that the particle pressure arises from random particle motion. 
This is inferred by analogy with the kinetic theory of a gas where random 
molecular momentum leads to the macroscopic pressure. The development of the 
particle momentum equation given here shows that n, is the appropriate pres- 
sure and ascribes to the fluctuations their proper role as Reynolds stresses. If 
the kinetic-theory analogy were valid, it  could logically be extended to the 
particle temperature since random molecular kinetic energy is associated with 
the macroscopic internal energy or temperature. It is clear that the analogy 
breaks down at this point since the internal energy of the particles is obviously 
dependent upon the internal particle temperature. 

The area-averaged Reynolds stresses appeared in the momentum equations 
because the flow is inherently unsteady. Likewise terms accounting for the 
transport of thermal energy by fluctuations occur in the energy equations. These 
added unknowns are the price to be paid for dealing in averages instead of solving 
for the details of the flow. The proper assumptions about the fluctuation terms 
depend upon the specific problem being considered. 

The manner in which Reynolds stresses come into the particle momentum 
equation is important. It gives a physical insight into the particle viscous effect 
in two- or three-dimensional flows where a particle velocity gradient exists. 
If  a, three-dimensional derivation were carried out, a Reynolds stress I/ (v’f,v;,)]l 
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coupling the fluctuations in two directions would occur. The fluctuation of the 
particle velocity in the y-direction transports x-direction momentum, the 
effective action of viscosity. Murray (1965) in his work on the motion of a gas 
bubble through a fluidized bed (‘boiling ’) employed a particle-phase viscous 
effect. The formulation was attributed to unpublished work of Carrier and 
Cashwell. It was based on equating the shear stress with a rate of particle strain. 
Particle strain was analysed by analogy with solid mechanics using the configura- 
tion of the separated particle. The particle-phase viscosity derived on this basis 
is a property independent of the flow field. The physics of this model disagree 
with the concepts outlined above, i.e. that the particle viscous effect is a Reynolds 
stress phenomena, not truly viscous and dependent upon the nature of the 
particle flow fluctuations. 

The co-existent gas and particle phases interact through the source terms 
$/A,, 6/A,  and &/A,. For the case of dilute flows it seems reasonable to evaluate 
these terms using drag, heat and mass transfer coefficients for a single particle. 
However, shock tube experiments by Rudinger (1965) indicate a large dis- 
crepancy for the drag. These results are only tentative and may be caused by 
extraneous factors. In  non-dilute flows the flow field of the particles influence 
each other and this must be accounted for in P. Particle-particle collisions are not 
accounted for in the theory presented here. They do not appear to be important 
even in non-dilute fluidized beds when one particle size is present. Marble (1964) 
has investigated theoretically collision effects in solid particles, and Crowe & 
Willoughby (1966) have recently formulated a problem where droplets of dif- 
ferent sizes coalesce in a rocket nozzle. 

Another comment on the source terms concerns the mass transfer. The 
momentum carried into the gas phase by vaporizing particle material is 
accounted for by /(vf2)11 (9). If material were condensing from the gas phase, 
the sign of $ would change. In  either case the matter which is about to change 
phase is located a t  the surface of the particle and the velocity on either side of 
the surface is the same. This result disagrees with that of Lype (1965) and several 
other papers concerned with condensation on particles. For vaporization it is easy 
to see that the matter enters the gas phase with a velocity corresponding to the 
particle velocity. On the other hand, for condensation, the gas does not change 
into liquid while it moves a t  the gas-phase velocity. It is first slowed down as it 
passes through the boundary layer around the particle and because of the no-slip 
condition the gas is moving with the particle speed just prior to changing phase. 

The remainder of the remarks will discuss some aspects of dilute flows. As 
noted previously the basic equations do not distinguish between dilute and 
non-dilute flows. The difference is that several terms drop out for dilute flows 
and a simpler problem results. 

Dilute flow has come to mean a flow where the volume of the particles is small 
compared to the total volume (A, ) /A,  N 0. Recall that 

8, = (A,/A,)p,  = $7rrr3p,n = ( 1  -A,/A.Jp,. 

S, must be finite; otherwise the particle-phase problem vanishes. Since 
(&)/Ae -+ 0,  pe must approach a. Looking at the next term, if p, + co, either 



Properties of a non-equilibrium gas-particle mixture 30 1 

r 3  or n must go to 0. If r + 0 then drag, heat and mass transfer will vanish and there 
will be no interaction between the gas and particles. Thus the number density 
must vanish as p, increases. The last terms show that Ag+ A,. 

The limiting forms of the continuum properties are readily found from the 

defining equations: &p3-fsp, 7Tg-t0, 

6,+Pg, T*+P)g. 
The major simplification is that the particle pressure drops out. 

Next consider the Reynolds stresses. If the gas flow is turbulent, then the 
Reynolds stresses are important and must be dealt with. However, suppose that 
the flow is laminar and the fluctuations in the gas velocity occur because of the 
presence of the particles. Every time a particle passes the point under observa- 
tion, a fluctuation in the gas velocity OCGUrS. For the special case of the dilute 
limit, the number density approaches 0;  therefore the gas-phase Reynolds 
stresses will vanish. 

The particle-phase Reynolds stresses are also negligible for dilute flows but 
for slightly different reasons. Particle fluctuations are the result of fluctuations 
in the drag force. These variations would depend upon things like size and shape 
variations, local fluctuations in the gas flow, and other random phenomena. All 
of these phenomena are independent of the particle material density p,; there- 
fore the magnitude of the fluctuating drag force is the same as the dilute limit 
p, -+ co is taken. Since the density of the particle increases, its response to the 
same fluctuating force will diminish. Asp, -+ 00, then the particle-phase Reynolds 
stresses will approach zero. These results together with those discussed above 
provide a considerable simplification of the equations for the special class termed 
dilute flows. 

This work was part of the author’s dissertation at the University of California 
at Berkeley. The author would like to acknowledge his indebtedness to Professor 
A. K. Oppenheim for serving as faculty advisor. The financial support from 
NASA Grant NsG-702 was also appreciated. 

Appendix 
It will be demonstrated that the particle-phase pressure force A&pf)  may be 

computed by substituting the average pressure across the centre of the particle. 
We refer to figure 6 for an illustration of the nomenclature. By definition A&,) 
is computed by choosing a plane at x and integrating the pressure of the particle 
maherial intercepted by this plane. Again we remark that the integral must 
include the surface tension force a t  the edge of the particle. Let the cross-section 
of the ith particle intercepted by a plane be Ai and the average pressure pi. Thus 

I- 

The 2-co-ordinate of the centre of a particle will be called ci. Expanding pi in a 
Taylor’s series about the centre of each particle yields 
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Now we make a distinction between particles on the right side of the plane + , 
and those on the left - . With this notation we have 

Numerous particles occupy the cross-section and i t  is assumed that one from 
each side can be paired together according to the distance from the particle 
centre to the plane. That is the particles are paired so that 

(z-ci-) = -(x-ci+) = ( z -c i )**  

Ai+ = A& = Ai*. 
The cross-sections of each pair are also the same 

The pressure force is written as the summation over i & pairs 

There is a possibility that one particle.is left over; however, we accept this error. 
Two final assumptions about the flow will be made. First that the average centre 
pressure of the particles does not change appreciably over the distance of a 
particle diameter, i.e. 

This is essentially a requirement that the gas-phase pressure is approximately 
constant over the same distance. The second assumption is that the particle 
acceleration is approximately constant over the distance of a particle diameter. 
The pressure gradient within the particle characterizes this acceleration and so 

Pi(%+) N Pi(%-) = Pic(x) .  

With these assumptions 

A A P f )  = p w * P i c ( 4  = A A P i c ) .  
a h  

Thus the particle-phase pressure is independent of the state of acceleration of 
the particles. 
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